http://20elm.ir/an-introduction-to-scheme/

ترجمه مقاله در مورد آنالیز همگرایی روش گوس (دانلود رایگان اصل مقاله)

ترجمه مقاله آنالیز همگرایی روش گوس
عنوان انگلیسی مقاله: Convergence analysis of the preconditioned Gauss–Seidel method for H-matrices
عنوان فارسی مقاله: آنالیز همگرایی روش گوس – سایدل با پیش شرط برای ماتریس های H. 
دسته: ریاضی
فرمت فایل ترجمه شده: WORD (قابل ویرایش)
تعداد صفحات فایل ترجمه شده: 10
ترجمه ی سلیس و روان مقاله آماده ی خرید می باشد.
_______________________________________
چکیده ترجمه:
در سال 1997، کونو و همکارانش ( به نام های توشیوکی کونو، هیساشی کوتاکموری، هیروشی نیکی) با بهبود روش گوس – سایدل برای ماتریس های Z، جبر خطی Appl. 267 (1997) ثابت کرد که نرخ همگرای روش گوس – سایدل با پیش شرط برای ماتریس های Z مسلط قطری ساده نشدنی با پیش شرط 1+sa برتر از نرخ روش تکرار پایه می باشد. در این مقاله، پیش شرط جدید ارائه می کنیم که متفاوت از پیش شرط ارائه شده توسط کونو و همکارانش (به نام های توشیوکی کونو، هیساشی کوتاکموری، هیروشی نیکی که به اصلاح روش روش گوس – سایدل برای ماتریس های Z، جبر خطی Appl. 267 (1997) پرداختند، می باشد و نظریه همگرایی در مورد دو روش تکراری پیش شرط دار را زمانیکه ماتریس ضریب یک ماتریس H می باشد، را ثابت می کنیم. در ضمن، دو شرط کافی جدید برای تضمین همگرایی روش های تکراری پیش شرط دار ارائه می شوند. 
کلیدواژه: ماتریس H، پیش شرط، روش تکراری پیش شرط دار، روش گوس – سایدل، اشتقاق H
1.مقدمه:
سیستم خطی زیر را در نظر می گیریم:
که در آن A یک ماتریس nxn می باشد و x و b بردارهای n بعدی می باشند. برای هر تجزیه، A=M-N با ماتریس ناویژه (ناتکین)، روش تکراری پایه برای حل سیستم خطی (1) بصورت زیر می باشد:
 برخی تکنیک های پیش شرطی که نرخ همگرایی این روش های تکراری را بهبود می بخشند، توسعه یافته اند. 
 

 

جهت دانلود محصول اینجا کلیک نمایید
هیچ نظری تا کنون برای این مطلب ارسال نشده است، اولین نفر باشید...

شمارنده